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SUMMARY

Nev explizit finite differencze methodes are
developeld for arproxicating the discoztinucus time de-
pendeat solutiors of aonlinear hyperbelic conamervation
lavs. The anilveizs ic based on the merthod ef lines
aryroach of decoupiing the space and time discreziza-
tions and analyvzing each indepeadently before combin-
ing thes intc a coempotite method. Particular atten-
tion is giver analvzirg to high ovder spatial differ-
ences, artificial dissipation and the accurate approx-
imation of boundary conditions. Both a tuird order
iterated leap~frog predictor-corrector and a second
crder iterated Runge-Kutta method are shown to have
excellent stability and mccuracy properties for the
time integration. Thess methods are A-stable whan
iterated to convergence and have the special proparty
of alloving for local improvesants in the stability
and accuracy of the computed snlugion.

The paper is dniglns QZ 1 }ﬁmgist or

engineer congrruct a numerical pethod specially tay-
lored to a specific problem. The mnalysis requires
an elementary knovledge of the vumerical solur ‘on of
ordinary ditferential equacions, finite diff. . sn- -~
theory and gas dynamics.
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1. IKTRODUCT 10K

The numerical solution of conservatior lavs is
a haghly complicated an problem~dependen: procese.
The solutior ususlly contains dynamic intersctions be-~
tveez shock waves, rarefaction waves and contac: éis-
A methol developed for a particular test
probler may or msT not work for another with stronger
(or weaker) shucks and contact discontinuities.
Mathods which work well ir ne space dimension may or
may not be sasily extended to two or thres dimensions.

The anslysis in this report is based on solving
systene of couservation laws in one space dimension.
We recognize that there uxist many excellent methods
to integrate systeams of one-dimensionsl conservation
lavs. The addition of annther numerical method de-
signed only for these svuations would not contribute
wignificantly to the advincemeut of scientific comput~
ing — ynleas it generalizes to higher spatial dimen-
eions. We also reacoguite tunt there is little hope of
generalizing a method which fails in one diseansion to
oue that works in higher dimensions.

The approach is based on the philosophy of the
method of lines (MOL). (Hyman (1976)). In the method

. of linss, the space and time discratizaticns of a

partial differential equation (PDE) are decoupled and
analyzed independently. First a me+hod is selected to
discretize the diffarential equation in space and in-
corporate the boundary conditions. The spectrum of
this discrete oparator is then used as a guide to
chooss an sppropriate method to integrate the egua~
tions through time.

The dissipative effects of a numarical method
are crucial to constructing reliable methods for con-
ssrvation lawvs., This is particularly true vwhen the
solution is discontinuous as in a shock wave or con-
tact diacontinuity. (All variables are discontiouous
across & shock vave, vhile across a contact discontin-
yity the density is discontinuous and the pressure and
velocity are continuous). The numerical dissipation
can be shapad or controlled by adding an artificia)
dissipation term explicitly to the differentisl r.qua-
tfon. This dissipation is the lescing rruncaticn
error in the numerical approximatior. anc .4 chosen on
the basis of the axpacted form of the solution. For
example, wore dissipation is added to calculaticns
vhare thers are strong shock wave interactions than
whan ths important aspect of the calculation is to
datermine the location of a contact discontinuity.

Choosing an accurate method to accomplish each
of these tasks, space and time discretization and in-
corporatiiLp artificial dissipation in the numerical
solution, detarmines the succass of the calculation.ln
Sections II1 through VI we will consider sach choice
independantly snd cosbine them in Saction VII to
develop & class of particularly good explicit finite
difference methods. 1In Section VIII, ve presant some
auperical examples to illustrate the propertiea of the
different methods and analyze their results in
summary, Section 1X.



Before develsring & good methol for an  gvetes
of PUte one mus: hLive & baslic wncerstanion; oo oo
eguazions belng sclvel. We mow give & Br.e? revilew of
the general the:vy of conservatior. laws.

I1. CONSERVATION LAWS

Genera® Theorx

A vector quantity ¥ of length Y 1¢ conserve? &r
it ev.lves under the flovw cf & coneervazior la= if tre
amount Of sach sutstamcze W:, 4=1.2,....%, e=nteizg? dirn
ary fixed vclure V is due entirely e the fluy F-'.
across the boundary 2V of V. These conservasic:s’ laws
car be sxpressec ip integrai fort as

d
£ €
ac Jy 4

vhere © denotes the outward morzmal to the bouncary.

dx = - f“_ RO NE (z.3)

Moving the time derivative under the integrsl
sign and applying the divergence theores Eg. (2.1) can
be revrittan as

] , ~

fvﬁ ¥y + div rj(u) dx = 0 . .2)
By letting the volume V ghrink to a point we obtain
the systen of PDEs

] ) = -
3t Hj + div fj(k) 0, J=1,2,..,,N

at every point where W and F are differentiable,

(2.3)

Ia one space dinension Eq. (2.3) can be writtem
in vector form as

"t + F(i)‘ a0 (2.4)
or

"t + G(H)h' v 0 {2.5)
vhere G is the N by N matrix gradient of F with
respect to W.

Equation (2.5) is a firrt-order quasi-linear
systex of PDEs. This system is hyperbolic and well-
posed if the eigenvalues of G are distinct and real.
These eigenvalues, called the characteristic veloci-
ties, are the local signal speeds at vhich sharp ais-
turbacces propogate.

It is well known that a system of nonlinear con-
servation lavs may fail to have & continuous solution
after a finite time. Since conservution luvs are de-
rived from integrel ralations (2.1) these gensralized
solutions may still be admitted as long as they are
weasurable and bounded. There ase instances, as in
the Euler equations of gas dynamins, that theve may be
aany different generalized solucions satisfing Eg.
(2.1) with the same initial deta. Within this set
only one of these solutiona has any physicel signifi-
cance. An important consideration i+ comstructing a
nuserical method ic tn build s mechinism into the
difference scheme that will automatically chooac the
physically relevant solution.

The physically relevant soluticn sust satisfy
the differential ejuation (2.4) in smooth regions and
fulfi.l two additional constitutive relations across
any diszontinu’ties in tha flow. The first constitu-
tive relation, called the Rankine-Hugoniot jump con-
ditions, states that the discontinuity must propagate
with speed o saticfing the jump conditions

Uﬂ!:’ - IFJ(H)I v 3=1,20...,N.

Here | ]} denotes the jump of the quantity in brackets
across the diicoutinuity. These jump conditions are

S6ifizes “v the numerical sclutior I the eguatiors
&Tc Bilved iz Ziverrenze frrr (Lg. (2.4) ané the fiux
furciion 1f ¢ifferencel with centcrel éifferences.

The second corsiitutive relatica, calle? the
entropy conditior., statet that entropy mus: increase
across the shock discontinuity. This condition ir sat-
isfied by the liemi:zirg sclution of the viszous ecua-
tiont as¢ the viscosity is decreased to zerc. Nurmeri-
cal methods for sclving diecontiruous sclutiors cf Eg.
(Z.c) have g o=zll artificial wiscoeity that helps
seiec: the physicelly relevant solutior.

The methods developed in this paper will be dee-
crib-2 4ir terz: of the Euler equaticne of gae dymazics.
Houever, ®ost of the techoiquer and resulss are eguz.ly
valid for other hyperbolic svstems. For & further dis-
cussjon of the wathemazical! theory of geners! hyper-
bolic systers of conaervation lews we refer the reader
tc Lax (1573) anc (1976).

Euler Equazions
The one—dimerejonal Eulerian equations of gas

dynazics car be written in divergence forr as
Ht +* l-‘(h')l =0,

(1) e ()

where p = mass demsity, u = velocity, m = pu = pomen-
tun, E = p(I+5u?) = total energy per unit volume, 1 =
internal emergy and p = pressure.

(2.6)

Equation (2.6) is hyperbolic if presrure is an
increasing function of density st constant entropy.
This is the case if we assyme the equation of state to
be that of a polytropic gas, i.e. p = (y-1)Ip. The
paranster Y is & constant greater than one and equal to
the ratio of the specific heats of che gas. For this
equation of state we have

g . Y. .2
do »p € >0

at constant emtropy. The quantity c is called the
local sound speed of the gas and is relsted to the
charactaristic velocities u, u+c and u-c of Eq. (2.6).

1I1. SPACE DISCRETIZATION

To solve Eq. (2.6) numerically we must first
chose an appropriste approximation of the spatial de-
rivativas. The guiding principle in choosing s spatial
approxjastion is that the discrete model should retain
as closely as possible all the crucial properties of
the original differential equation. Equations (2.6)
reflect principles of conservation oi mass, somentum,
and energy which are the basis for the mathematical
theory of fluid dynamics. Thase propertias should be
preserved in the difference formulation. This is best
accomplished if the eaqustions are integrated and dif-
ferenced in divergence form using centerad finit2
differences.

Phase and Damping Errors

The derivativa of the flux function F deteraines
the phase velocitiea of the solution and hence the
shiock speads. Therafore, the errors in approximsting
F and its derivative should be masde as suall as poss-
ible. Thaese arrors can be divided into two classas;
phase or dispersion errors and damping or dissipation
errors.

The analysis is bssed on computing thes errors
for numeriral approximations of traveling wave solu-
tions to Eq. (2.6). Consider the soluticn to Eq. (2.6)
with periodic boundary conditions on the unit iaterval
and constant initiasl pressure and velocity v. The



szlusicn is & travesing wave and gzticsfic: @
linear byperpz-lic convective eguat.cr

-o.

fe ¥ %, (2.3
vitk the initizl cenditions ¢(x,0) = g(2.), an: the
solution c(x,t) = g(x-v:).

Let N be a natural number, define &x = 1/(2N-0)
and x, * kix, whers k ® 0,1,...,2%. At these prinze
g{x) cac be represezted by the firnite Fourier ser.e:

"- L J

3(x) = i E, exr(2rifa)

" pres *k
vhere

- 1 2K
6y " T L B el

Toen
K
Fls,e) =
==K
is a sclutior of (3.1) which takes or the initisl
values at the grid points x,.

To approximate (3.1), ve begic by replacing the
spatial derivatives with second order centcred differ-

éj exp(2ri) (x~vt)) (3.2)

ences. This results in a system of ordinary differen-
tisl ecuations
R: 4+ H =0 (3.3)
6 1 0 0 -0 -;
-1 ©6 1 ©»
o (xqg,t) ¢ <3 0 1 .
R : R ES~3 i - :
r(xZN.t) a -'1 ° '
‘ ° . .1 °J

lquation (3.3) can also be so'ved exactly and
the solution is

N
o, (t) = &, exp(2mij(x,-v,t;) , (3.4)
R I
vhere
sin 2r{Ax
vy v S

The eigenfunctions of the approxiumate solution (3.4)
are the same as in the exact solution (3.2) but the
temporal eigenvalues differ. The aigenvalues of H are
purely imaginary, as they should be for a hyperbolic
operator, and so all the errors occur in the phase of
the approximate solution.

The principle of linear superposition states
that a genaral solution to Eq. (3.1) can be expressed
as & sum of solutions to Eq. (3.1), each of which con-
sists of only a single fraquemcy. By analyzing the
error in esch frequency of the solution we can conr
pare the accuracy of different numerical methods.

The phase arror in the k-th mode is

oz(k) = y2nkt (1 - -'—’%;%Z:‘J)l :—; (ZIMI)J. 3.5)

We define M; = (Mn).1 as the gumbar of mesh points
per vava lemngth. The arror can be exprasced as

3
o, (k) --‘2—;2)— vkt .
oMy

Observe that the phase and muximup errors of
the approximats solution are related if the initial
values consist of a single frequancy g(x) = exp(2nikx),
then the maximusm error of the approximate solution at
the mesh points 2y is

- {
il °(’J.t) nj(:).l

! — Ll . .t
= . 8XFieTer A=V

~ ety et
- e < -l-.I.J \.r_l‘..l,.

- | e:p(l'lk;j):cx:{-Zfikv:) - exp(-2rikvkt)]"

& | exp(2rikx,)(v=v,) 2rdis’

3
» ez(k)

Gric Resoluzicn
The nu=ter cf mesh puints peedel per wave leryth
fer a gives phese or mpaximuz ervor e is

‘r Y
X, m 2 (3 vk-) .

The number of mesh peinie M: it dependen: not ozly o
the error bu: alsc or “he sguare root of the cozyuze-
tion time i::¢:ve., the wave speeld v, and the re.evant
modes of tie Izitisl dst:.
bl If fourt! .rder centered differences
(:1)‘ B (=, .tE -8 _z)l(lZLx»

142 8 44378y 1%y

are usel the phase error in the k-th mode is

_ 8 wmiz 2tkix - sir Afkix)
12+ kex

o‘(k) =y 2r kt (1

5
L SZI%_ vkt

30H‘
The number of wmesh points neaded per wave length for
a given error e is
r k
(15‘ vkt .
The corresponding relationships for sixth
order centered difference

-
H‘ 2n

(Bydy ™ (P yyym90 gy g tSe 4y =05 1 ¥97 570y )/ (602K
are 7
0 m L0 e,
140 M3
and
n 1/6
N, = 2w(m vkt) .

When the initial values consist of a single mode
then for a given phase or maximum error the relation-
ship between the number of mash points needed per vave

length is \
LI 1 70\ 1 3
M. o= ' A)
2 2n 4 (2“)2 (3 ) 6
or

] ]
H,®0.36 0 ® 0020 .

Thie relationship is independent: of the fre-
quancy, the phase error and the computation time.
table below compares the number of points per wave
length necessary to obtain a given accurary uping

second, fourth and sixth order centered differences.
2nd ot eth

The

erdar order order Accuraty
1. u, n eo/lvki)
3 ~ ¢
& & 3 2.6
] H) ] 0.03
36 ? 5 0.16
32 14 7 0.04
. [ % [ ] 0.01
128 19 10 ©.v02y
25%¢ 21 13 0.000¢

Table 1. Poluts per wvavelength for second, fourth and
sixth order differencea to have the same
Accuracy.



These eTrc* 1"'cx1n£:ian' heave beer ver:’. ¢l
oumerically for sz:urecies e'(viy # LL00TT o
grating the ciscreze equations ver: accurazes:
tipe.

Io & calcLiazion where the szlutiorn cerniains
many different frejuenciles, the bigh modes (I-5 printe
per wavelength) are approximatel equsily pocrly with
all the methods. The midlle wodes (6-1€ pzints per
wavelength) arc cozputed much wore azcuzately witr
fourth and sixct order éifferences thar with th:
second order methos. © Tne sixth order cifferenzes ave
more accurate for :he lower modes ther e€lti.cr pezcrni
or fourth order differences.

The relatiozship of the accurazies cf the
different mezhocs compared to the nu=ber of poirzs per
wavelengt! is even moré impressive ir higher cdicen-
sions., In tw: s;ace dimensions the numbers ir Tatle 1
should be squareé; ir three dimensiors cube:.

There arc disadvantages in usgicg the bhigher
ordar differences. They require more work to evaluate,
there is the added complexity of adding two or three
fictitious po.ints at the boundaries, and the differen-
tial difference equations (3.3) are¢ stiffer, resulting
in more stringent time step restrictions. (Ssc
Baction V1),

The enorwous increase in accuracy outweighs all
of these disadvantages. The difference formulas are
mcre costly to evaluate, but most of the computer time
ia spent evaiuating the flux funciions, mot differenc-
ipg them. 7The actual increase in computer tize is
only a fev percent vhen the same number of mesh points
are used in both a second and s fourth order
calculation.

The additional complexity or storage at the
boundary cannot be avoided, but it should mot deter
the use of high order difference in the interior of
the region of integration. It is desirable but not
essential that the boundary conditionc are approxi-
mated to the samt order of accuracy as used in the in-
tearior. Numerical experiments have shown that the
overall quality of the computation increases when
fourth or sixth order differences are used in the
interior instead of second order diffarancee even
when the boundary spproximation remains st only second
order in both calculations.

The other disadvantage of high order differences
is they decrease the upper bound on the time step when
compared to second ordsr differences. The stability
bound is reduced by 3/4 for fourth order differences
and 0/11 for sixth order. This is not as ssvers a
restriction as it might seaam. The stability bounds
of the itarated multi-step methods described in Sec-
tion VI are greater than standard axplicit methods.
Also, the stability limit is proportional to 1/4x.
When using high order differances you need fever
points to spproximata the solution vith the same
accuracy than vhen using lower ordar differences.

When the oumber of mesh points is reduced, the uppor
statility bound on the time stap is increased. There-
fore the overall vork in a high order approximation on
a course nesh may be much less than a lover order cal-
culation with the ssme azcurecy on a finer megh,

The next step is to daternine if this lineaar
analysin is applicable to nonlinesr squations with
shocks and contact discontinuities. PFiguras 1 dis-
plays the solution to two iuitisl velue prodblems for
Eq. (2.6). Each problem was solved twice, the only
difference baing that the spatial diffarences were
varied from second to fourth order.

The exact traveling wave solution (dashed line)
and computed solution (solid line) to Eq. (2.6) with
wv=]l are shown in Fig. 1 at time t=l. 1In this calcu-
lation we used eight meeh points per wvavelangth.

the
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oscillations.
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BOUNDARY CONDITIONS

Before calculsting the solution to any differen-
tisl equation one should determine if the boundary
copditions are copsistent with & well posed p:obien.

A puperical method cannot be expected to gemerate rea-

sonable results

‘well defined reasonable solution.

proper boundary

for a problee vhich does not have a
The importance of
conditions cannot be overstressed,

the boundary conditions exert one of the strongest in-

fluence on the behavior of the solution.

Also, the

errors introduced intc the calculation frox improper
boundary conditions persist even as the mesb spaciog

tend; to zero.
A common e

rror in prescribing boundary conditions

for byperbolic equations, such as the Euler equations,
is to over or under specify the number of boundary

conditions.
ponsmooth solut
boundary.

Overspecification uspually results in

ions with mesh oscillations near the

Underspecification does not insure che
‘solution is unique snd the numerical solutior may

tend to wvander around in steady state cslculations.
In either case the results of the calculatior are
not accurate snd one should be skeptical of even the
qualitative behavior of the solution.

When incorporating the boundary conditions imto
the discrete equations the spectrum of the discrete

operator should

from the spectrum of the differential operator.

be perturbed as little as possible
Thie

csn best be done by enforcing constituent relation-
ships on the difference equations such that the dis-

crete equations

are consistent with as many r-iltxon-

be_derived from the boundary conditions

ships that cap |
and differentia

] equation as possible.




F_.titious Foort:

1¢ defin- e ezlltior 8t surtr wbs
boundary con:.tiici. are C.ffereriiales wili resisect L2
tise and

ottaip differectaial corstrainte fcr the exiray:liat:oc
formulas. Tnis techoique will be smovz for refiezi-
ing boundary cou?.%ionr to the Euler equetions.
The reflectirg boundsry conditions for s ther-
mlly insulated wall for Eg. (2.€) at x = x_ are
u(uﬂ.t) =0, Ir(xc,t) = 0. {£.1)

The thermalix inguiasting bouadary comditioz,
I_=0, is obtear+d from the lam.t ¢f the viscout dis-
l!pntive equation: as the viscosily and bee: dissipa-
tioL tend to zerc. This conditiorL is pecessary tc
prevent a boundsTy laver in the ¢:ffereuce apprezixa-
tion of inviscid calculations due to the presence of
artificial dissipation. .

To inccrpcrate these boundary cond:tions iEtc our
pumerical sclultior wher using fourtk-oraer ceptered
dif{erences we will amtroduce twe fictitious peapts
st x_, = x = &x and x_, = ®_ - 2Ax outside the region
of in.egraeion. A thr%e po?nts ve need ap approxims-
tion to ¢, pu, and E to preferably fourth-order.
Comtining Eqs. (2.€), and («.)1) at x = 3 we
have 2 . e
0=(pu) 2 =(pu), = (" +p) ep =(y-1) Ip,

E, = Lol + 2 D), =0,
and

(pu)g, =-(p ), ==(p,), = 0.

Since these equations are valid for all time and y ¢ 1
ve have
(4.2)

p' g =B = EI =0

zX
as auxiliary toundary conditions at x = 2 consistent
with the original problem. This procedurs can be con-
tinued to give

= E = 0. (4.3)

Pexx © ®xxxx XXX
The nonphyeical solution at the fictitious points out-
side the region of integration pneeds to be chosen such
that a finite difference approxisstion of Eqs. (4.2)
and (4.3) are satisfied at the boundary.

When we replace the derivatives in the suxiliary
boundary conditicus by the standard centered five
point finite differences we see that Egs. £4.2) and
(4.3) are saticfied if and only if

P;=Py®  =-n,E =E (4.4)
for i = 1 or 2. Thus reflecting the solution symme-
trically or antisymmetric ily as in Eqos. (4.4) may
appear to be only first-order but in fact is a very
accurate spproximation of the boundary conditions for
the thermally irolated boundary given by Eq. (4.1).

No Fictitious Points

bere is not alwasys a simple extrspolation for-
mula such as Eq. (4.4) to extend the solution to the
fictitious points. For these probleams it is often
better to use uncentered differences near the boundary.
This method will be described for the linear byper-
bolic system of M equations

Ht = H(I)H. (4.5)
with the boundary conditions
BH° = b(t), x = x, (4.6)

Difficulties arise in defining the solution st the
boundary vhen 0 < Rapk(5) < Rank(H) = H. If Rsnk(S) =
0 then all the characteristics are outgoing and using
either uncentered differences at the points neasr the
toundary or straight forward extrapolation to the
fictitious points gives sccurate results. When
Rank(S) = M then all the characteristics are entering
the toundary and all the cowponents of the solution
can be solved for on the boundary. Uncantered spatial

differenzes car ther be used st the pcintr bear the
bourdary will re:.2t ir ar accurate af;rorim:tior of
whe boundar cornciticrr.
Woer Rhank 'S, a5 greater thar gerc but less thac
M ther by differentiatazg Eq. (L.€) witk respect to
time and replacing ¥, frox Eg. (4.5) we bave
BE(x)¥, =b'(r), == x,. .7
Approximsting ¥_ by second-order one-sidel d:fferences
sgives us x
Sho ‘o = lSho(Abl - 52) - 2&xb° (v))/5 . (4.B)

where B = H(x ). Equat or (4.B) gives us sdditional
informa¥ion abfu: the boundary conditiorce thati as
copsistent witk botk the origipal boundarvy condition
(4.6) apd the differential Eg. (4.5,.

Rank (§EO) < ¥,

we 8rill] dc mot iwve edougl boundary conditione to

solve for Wy uniquely. By differemtiating Ec. (4.7)
with respect to time,
SR(Wy)y = BH(H,), = b(t), x ¢ x, .9)

and replacing the spatial derivative with finite dif-
ferences we have .
SHy(Hg+)) Wo = SHo[Hy*2H)+H,) W) = (B +8,)W,)

+ 222 v(z) = O(ax?) .
to give us an sdditional relationship.

It is often the case that Hy is vonlinear and the
sbove procedure must be iterated. Usually one or two
iterations are sufficient for a stable accurate
‘boundary approximation.

Once W, has been found we can use uncentered fin-
ite differences to spproximate the spatial derivaties
at the mesh point nearest the boundary or we can ex-
‘trapolate the solution to fictitious points outside
the region of integrstion. This extrapolation cac be
done by replaceing the derivatives in Eqs. (4.7) and
:6.9) wvith second order centered differences and solve

or W_j.
Global Relationships

All of the boundary conditions coosidered so far
have been local. That is, they depend only on tbe
value of the solution and its derivative at the boun-
dary, independent of their values in the interior.
Some of these boundary conditions are derived from 8
global relationship. For example, the reflecting
boundary condition (u=0) is related to the conserva-
tion of mass,

d 1 1

% oPdl = - o(pu).dl = (pu)y = (pu), = 0

Suppose the solution satisfies the functional
global relationships

(4.10)

hJ(H) e0 , j=1,2,... K (4.11)
such as the'conservation lavs for mass, momentun and
energy,

b () (v)
5 = o "3 dx + Rj(t) 2 0. (4.11)

These functional relationthips cav be spproximated by
their discrete anslog equa:ions

B(W)=0 , §=48,1,2,... & (4.12)
wvhers the d{lcrete functional i, approximates the b
wvith at least the same order ofjnccurlcy as the tinlte
difrerence approzimstion to tae Euler equations.
The numericsl approximatior of the loesl form of the
boundary conditions is aot always sufficien’ to
guarantee tha global conseivation laws *hey are de-
rived from. In these situitions (usually arising
vhen there are moving bowndaries or boundary layers)
the global relation should be incerporated dirac:ly
into the differance squations. This can best be
done using a numerical technique based on the work
of Isaacson (1977).



Since we recuire the mocified geluiicz tr be
consistent wit: 1+ C.fiferemzza’ eguziicz. oz: cf ouv

functional relaticostips must reflect th:r cozsisierncy.

For exarple, the weal form (See lax (197:)rc? the
Euler equatiors car be writter as

B (w)=f [V +F )¢ =0
wvhere 8 is ar nrbEtrf:; test function. This test
function can be chosen to varish outside the regiors
where the solutio: is tc be varied. The tim: derave-
tive cac be gefis.ed by firite differencec suzt a:
the trapizodial rula e

atl & At +]
bo(W) & J [WTEs S (FTerT) 1edx = €

or some other impiicit difference forzuls using the
solution 8t t = (n+])At. The spatial derivative:r acnd
integratior are both spproximated by fanite.daffer-
ences.

Once the sclutioz satisfying (4.12) has beer ad-
wanced from t = nAt to t = (p+1)AL ¥y eny numeracal
pethod there is a residusl error in the functional
relaticnship

.(C)
lj(kn’l) =g, -
The solution at time (n+1)At is thep modified by
Nevtons sethod to reduce this residual error.

In sn actusl calculation onz rarely needs to vary
the solutioc st all the mesh points and restricts the
iteration to varying the solution at the points iu 8
peighborhood of the particuiar probles causing loss
of conservation, such as a moving boundary. In one
disension this usually means only one or two points
pgeed to be modified, in higher dimensions the itera-
tion may include one or two lines or planes of points.

1sbedded Regions
ere are many initial boundary value probloms

vhere it is easential to introduce artificial bound-
aries to reduce the computing time and storsge of «
calculstion. These problems are usually posed in a
domain much larger thai. the subregion where the solu-
tion is of interest. The subregion is blocked off
and imbedded ip the origipsl problem by creating srti-
ficial boundaries. The boundary conditions at the
artificial boundary are chosen such that the solution
on the full domain would sutomatically satisfy these
internsl boundaty conditions if the full problem were
solved. The goal, of course, is to approximste the
original problea as closely as poseible on the reduced
domsins.

The boundary conditions sust be consistent with
s well posed ipitial boundsry value problem in the
reduced domain. Overspecifying the boundary condi-
tions insures giving the wrong snsver and underspeci-
fying them does not guaraotee a unique solution.

Thus one sust be careful to prescride the correct
oumber of boundary conditions according to a linear-
ized snalysis of the incoming and outgoing character-
istics st the artificial boundary. These problems
cannot be swept sway by using one sided differences
snd including extra artificial dissipation to stablize
the results. Invariably, vhen this is done, the
oumerical solution io subsonic flow problems will mot
be sccurate.

Ve vill pow describe » computstionally efficient
spproach to incorporate an artificial boundary ioto
s flov which avoids both of these comstraints. The
method generalizes essily to higher dimens:.ons and to
systems otber than the Euler equations.

Consider the initial boundary value problem for
the Euler equations on the balf line [0,»), with re-
flecting boundary conditions at xs0, suppose we are
interested only in the behsvior of the solution in the
interval [0,1] snd vish to rastrict the domain of our
computation 1o a meighhorhood of this region. First
we map the the interval [1,®) into [1,b) with & map

suct as
2 C<x <l
y= («.1%)
be{l-b)/a 1<z <D
In this nev coordanste gystes Eq. (2.€) tranmsforus to
H‘ + '(f) r, =0, ,Llo.b)

1 ey
(b-5)/-1)%2 1<y<b

Toe sclution to (4.16) is identical tc the sclution
of our origiral protlem. Therefcre, the tracsfcrme?
systes has the correct mumber of signais enteric; and
leaviog throug! the artificial break pcipt at x=:.

The equelly spaced mwest or [C,b) correspozds to
s variable west ir the eriginsl coordinite systez
The varistle mesh spacing is constact in [C,:] az?
increasses ir (1,=).

In this transformed systes 8 wave glovs dovt in
the region (1,b) and approaches zerc speed a: x npear:
b. This causes s vave train to squeeze up, with the
lower frequencies being pushed into higher ones as in
Fig. 28 below. These higbh frecuencies cannot be com-
puted accurately and it is best to add som= dissipa-
tion to damp them out as they approach the trapsformed
boundsry b. This damping should be chosen suck that
the siguals propagating intc the region of icterest
{0,1] depend in some sense ou an average of the soiu-

where

s(y) = (-.1¢€)

tion outside this region, i.e. (1,b). A possible
fora for the dissipation is
W, + s(y)F_ = (Ayd(y)¥ ) .17)
-where y vy
0 0<y<1
4(y) = 2
6[(y-1)/(b-1)] 1<y<h.

{The graph in Fig. 2b shows the functional form of the

two coefficients. Notice that the equation is un-
changed in the interval {0,1] and becomes parabolic
in tle interval (1,b]). 1In fact at y=b the equation
redu.es to 2 simple diffusion equatien.

/d

1 b

¥y 18 Y a8
Tig. 28 Graph of sin(évx(y)) Pig. 2b Form of d end s

Boundary conditions must be given for all the
variables at y=b for the prnblem te be well-posed.
The boundsry condition for steady flow at infinity
(Wy=0) gave the best results ip a series of test prob-
lems.

By imbedding the equation in the subregion into
s well-_osed problem in a slightly larger domain the
difficulty of maintsining the correct pumber of bound-
ary conditions st the artificial boundary was sssured
antosatically. Furthermore, the informaticu entering
the region st this boundary depends cn sore globsl
average properties of the solution outside the sub-
region.

The number of points outside tie imbedded sub-
region for the approximation to be accurate and pre-
vent superfluous reflections depends on the strength
of the outgoing wvaves apd their angle of imcidence to
the boundsry. The stronger the wave or the smaller
the angle of incidence the more points are needed.



Ic one dimersicz th+ angle of imciderce iz alv.-: O0F
ané very few exire p-inte are peeasé. I1r te: ac:
three disecsiors three tc five points may be meedel
for a strong shock wave glancing the boundary.
Characteristic Fors

Ip probless where the solution is sensitive to
the spproximation of the boundary conditions it ssy
be more stable to transfors the boundary conditiors
or the equation into characteristic form. The ertrs-
polation formulas are ther derived to extrapclate the
outgoing characteristir variables to the fictitious
points. These formulas, as before, should inccrpeorate

5 many relationships that cap be derived froe the

boundary conditions and differential equatior as
possible.

At » subsonic inflov boundary tiae boundary condi-
tions should be of the form

usE °1("'°) + pl(t) © (¢.18)
and
u+c = a,(u-c) + B.(1) , 4.19)
Al sub-

wvhere a, and B nie functiois of t alone.
soric eutflow iﬁundury the boundary conditions should
be of the forz
u-c = a.u + ca\u+c) + B.(t) .

When the flow is iupersonic at tha boundary tbhen
either three or mo boundary conditions are given,
depending on whether it is an inflow or outflow bound-
ary.

Characteristic sariables are also importanl when
00 amount of algebrs seems to yield enocugh relation-
ships to uniquely define all the solution variables
at the fictitious points. When this happens one is
forced to extrapolate on some of the varisbles without
any boundury relationships to guide the extrapols-
tion. Jt is usually best to sxtrapolate on outgoing
chara:teristic variables and use their values at the
fictitious points to provide the axtra needed in-
formation.
Differential Form

Whatever ex:rapolation formula is used thcre may
be sone inherent truncation error im the extrspolated
solution at the fictiticus points. Some of these
truncation errors can be eliminated by changing the
differential form of the equation at the boundary.

For example, the reflecting boundary conditions

(4.20)

(4.1) and (4.2)can be incorporated in the Euler equa-

tions at the boundary to give

(31R), -

at the boundary. By differencing these equaticus,
rather then Eq. (2.6), at the boundsry we bave pre-
veuted some of the possible truncation errors inherent
in the extrapolation formula, from creepinyg inote our
calculation. This is true even vheo the extrapolation
formulas are based on & finite difference approxima-
tion of the boundary condition differential relation-
ships.

Notice that the modified Eq. (4.21) bas been kept
in divergence form. This is particularly isportant to
maintain conservation when shocks are reflected at
the wvall.

Using the modified differential form of the
equations is especially important when there is 2
removable singularity at the boundary. These teres
should be replaced by fheir equivaleat forms obtained
using L'aopital 's rule.

V. ARTIFICIAL DISSIPATION

Artificial dissipstvion or artificial viscosity
is » special form of truvcation error either inherent
to a finite difference approximation or resulting
from explicitly adding sn additional term to the aqus-
tion. The purpose of the artificial ters ip to remove
many of the uvumerical difficulties by dissipating or
damping out the high frequencies of the solution.

(4.21)

Ttis aprroazt doec ir sode sense moch up the effects
¢! the wiscoue an? @:seipitaive teras ciscarded ir the
decivatior of the Euler equations ip that it primarcily
dissipates the hagt wave numbers, but it bas little
te dc witk true beai dassipation or wiscosity.

There are faive primary reasons for including

-artificial dissipation in the mumerical approximstion.

They are:
1. Yo schicve proper entrepy production scross shock
fronts.

2. 7o solve the probles of the energy cavcade wher
computing only & fipite pcumber of modes,

3. To coumpensste for sparial errors, suck as the
Gibt's phepomepon, mear discontinuities io the
solutier.

4. To compensate for the dispersion error in the
numerjcal scheme.

5. Tc stabilize certaip time differencing method:.
Tae form of a good artificial Sissipation terc

tailored for a particular problem will depend on which

of these pcints are most important. It is therefore

essential to designing a numerical method to have a

basic understanding of esch of thes. Iu this sec-

tion we will revies each reason for adding artificial
dissipation and suggest a form which will, witk luck,
vork for a large class of problems.

Entropy Production
The most common veason given for adding artifi-

cial dissipastion is so that one can calculate shock

wasves. Entrcpy increases across a shock front, but

Eq. (2.6) has no mechanisw for the increase. Ve must

.add 3 ters to the equation wvhich vill allov entropy

to increase by the proper amouc.. The term should be

in conservation fors to maintain the Rankine-Hugoniot
juxmp conditions and therefore give the correct shock
speed.

Another desired effect of the artificial dissipa-
tion is to smooth oui monphysical discentinuities in
the flow. That is, it would be advantageous if the
artificial dissipation were formulated in such a vay
that physical shocks are stable and nonphysical sudden
compression shouks are unstable.

It is important to add enough artificiai dissipa-
tien to elliminate numerical oscillations around the
shocks. These oscillations can destroy the accuracy
of the calculation by creating nonlinear instabilities
or introducing nonphysical features in the flow such
as pegative mass or pressure. The oscillations may
generate pew artifacts ioto the calculation such that
the numerical calcuiation is stable but converges to
the wrong solution [Harten et. al. (1976)). 1Im
reacting flows thesc overshoots can trigger s chemical
reaction and lead to meaningless results.

The energy in the high modes in a meighborhood
of a shock is dissipsted as heat in the physical
system, but mot by ¥q. (2.6). It would be advantageous
to tune or shape tne artificial dissipation so it has
a much stronger dissipative effect on the high modes
than the lov and middle modes thus minimizing the
dagping will be in seooth regions. The middle range
frequencies will still be adequatelyv represented to
give rccurate shock speeds and the dissipation in th
high modes v.ll in some sense approximate the physic
situtstion.

The artificisl dissipstion cen be sheped by using
high even order spatial derivatives or using s non-
linear tere. Real heat dispipatisn and vircesity are
represented in the equations by second order spatial
derivative terms and are not vell tuned for nuserical
calculatior.. An important feature which must be con-
sidered in designing an artificial dissipative ters is
that one is computing with only a finite number of
wocdes and the true viscous effects usuaslly are depend-
wt on high modes outside the ir2lm of the computas-
tiom, or the high modes that are poorly repreamsnted by
the numerical method. By acknowledgir: that we don‘t
(or can't) approxisate the true dinsi, «tive affects ve




axe free to sbape the artificial disripaciz: a:- ¢--
Sigo it specii:-ally tc ephance 8 munericol meiil:
By allowing nc_.ivear terms the dissip2iior ca: be
made to vary fros » ssill smount for weal shozit to &
Jdarge amount for strong shocks. By using sav four:ih
order derivatives the dissipation will be more dissi-
pative st high frequencies than second order de-
rivative based dissipation and at the same time be
dess dissipative in the lov and middle freguencies.
Energy Cascade

Toe second major ‘reason for adé.ng srt:fizial
dissipation is tc solve the energy cascades proties.
Typically, upergy enters the systex at low wave
-oumbeis and cascadss uypward througt the higl wave
pusbers wheie it is eventually dassipated by m-iecilar
wviscosi*y and enters the syster as heat (Kolmepg. -off
bypothesis). Iv numerical calculations the grnerp:
spectrus is limited by the number of mest peoicnts.
When there is mo artificial dissipatior ic the systec
the energy cascade backs up st the higher frequerncies
and shows up in the calculation as high frequency
pDoise or trash. Some of this energy is alissed or
reflected back into the lower wave numbers. Thjs
closed loop energy cascade cap destroy the accuracy
iv all wvave numbers during even moderately short
computations.

Gibbs Phenomenon

e third resson for sdding srtificisl dissipa-
tion is to compensate for the inexactness of the spa-
tial approximstion. These errors are due to approxi-
sating » function by an interpolant vhese values
agree vith the functioo at a discrete set of sesh
points. The errors ip the interpolant are most severe
rear discontinuities in the function being spproxi-
mated. At these points the contipuity conditions
used to derive the interpolant break down.

Equation (2.6) preserves the positivaty ef the
density of the solution. In general, however, the
pumerical interpolant does mot. Adding artificial
dissipatinn to the numerical approximation damps the
high frequencies and helps prevent the lost of
positivity.

Dispersiop Error

The fourth and fifth ressons for sdding
artificial dissipation are also to compensate for
inaccuracies in the uumerical method. Dispersien
errors come from the inexactness in beth the time and
space differencing methods. The dispersion errors due
to the different modes of the solution travelling st
different and incorrect velocities can accumulate and
destroy the accuracy of tbe computation. This is
particularly true for the higher modes even in calcu-
lations of flows which should have only smooth selu-
tions. Incressing the accuracy in both the time and
space differencing methods will reduce the dispersion
in the 'ow and middle frequencies, but not the high
modes. It is best to damp these out by some form of
artificial dissipation.

Stabjlieation of Time Integration Msthuds
The ability of artificial dissipation to

stabilize vhat may otherviwe be an unstable time dif-
ferencing mathod for Eq. (2.6) lies im the fact that
it shifts the spectrum of the spatial oparator such
that the solution to the modified equation 13 mathe-
matically and oumsrically more stable. This is espe-
cially trus for such standard methods as forvard Euler
and ixproved Fuler.
Different

For many problcms the artificial digsipstion io-
herent to the time integration method is sufficient to
compensate for the spergy cascade problem and alsc the
entropy productiom in weak shocks. For strong hoecks
it is necessary to add significantly more dissipation.
The axtra dissipation can be addud by explicitly add-
ing & dJdissip'.tive truncation error to Eq. (2.6). Thie
is dooe in all the shock calculations in Bection VII.

The modifiel aguztics for these calsulations carn be
writler &s
. k
“: +F, = (x dk_ )y s k=1,3
where
Lty (=1, fLey f=1, . £
d= e(u) I Fa e(£) FHduel v 0f

{5.1)

and Agoy is the lavpest characteristic velocity of the
gystes an? ¢ i¢ called the srtificia) digsipazior
coefficiens vhere (>0 1f k=l and ¢<0 1if k=2,

It g=Y see~ strange at firs:t to use a firel or
ever third oréder ar:ificial dissipatior tern vith a
fourth or sixirn order approximation of the derivatives
of the fluy ¢unctior. Ir calculations with strong
shock waves there is not always a one-to-one correla-
tict betweer the formal order of ac-uracy of & differ-
ence schene and “he true accuracy of the calculatiorn.
The mos: relistle and accurate artificiel discsipatioc
terms known happrn to be of low orde. and we are stuck
with theo until better ones carc be developed.

Vi. TDME DISCRETIZATION

In chosing the "best" numerical wethod to in-
tegrate the Eular Equations through time one has to -
consider the accuracy, stability, storage require-
'ments, computational complexity and the relative cost
-of the different methods. These factors are depen-
dent on each other and tradesffs must be made a5 to

which criteria are more important for a pirticular
problen.

Spectral Analysis
Bcth the phase and domping errors depend on the

spectrum of the differentia) equation and the time
step size. The time step can be varied during the
calculation to reduce the numerical integratiop errors,
but the spactrum of the differentisl equations is de-
terninud by the spatial difference operator. A good
integration method depends on how accurately It can
integrate a particular set of equations. For this

Teason the spectrun of the spatial difference operator
is the most important guide in selecting an efficient

numerical! mwethod to inteprate through time. The
spectrur can be determined by analyzing the linearized

continuous time - discrete space approximation of the
partial differential equation.

Equation (2.6) is solved after adding artifi-
cial dissipation and therefore wve must analyze a
system of the form

R + oy " GAxpn . (6.1).
A semi-discrete spproximation of (6.1) resul-.s vhen
the spatial darivatives are approximated by finite
differences on a mesh of N points, This sistem can be
written in the form
y = Ay + 8axBy = Cy = £(.) (6.2)

The prime demotes the derivative by y with respect to
time and the vector y is an array of the app-oximate
sol ition at the mesh points.

ey Lrem By

~h o2 0
Rasl anin

Fig. 3, The eigenvalues of AxC



Wher second-order centered differencer ere usel
the eigervalues cf A are imagpinery, the elpenve_ucs
of B negative rezl. The eigenvalues of C are cerpler
and lie on the e_lipses graphed in Fig. 3.

We shall first analvze Eq. (€.2) when ther: is
po artificial dissipation (i.e. ¢=0) and later include
the effects of the dissipation as a perturbation on
this equation. When é=0 Eq. (6.2) is dispersive since
the eigenvalues cf A lie on the imaginary axis. Theze
eigenvalues, ), are equal tc iau, i1a(u+c) and fa(u-c),
where o depends upon the spatial order of apprcxirca-
tion. When second, fourth or sixth order centerel
differences are used and the boundary conditions are
periodic on the unit interval the corresponding o's
are

a, (sin(2ri2x))/ax (6.3)

a, = (8 sin(2ritx) - sin(4riLx))/6ix S (6.2)

and
o = (sin(6rjix)- 9 sin(4riax)+ 45 sin(2¥3ax))/30zx (6.5)

for
4 = -N/2, -N/2 4 1,...,8/2 aud &x = 1/N .

To facilitate studying the proparties of differ-
ent time integration methods we use a well known re-
sult from ordinary differential equations. The isola-
tion theorem, Lomax (1967), states that the stability
and accuracy of a numerical integration method for
Eq. (6.3) is determined catirely by how it spproxi-
mates the decoupled diagonalized system

y’-liy.

lit
with the solution yj(t) = yj(0)e vhere the 11
are the eigenvalues of A.

(6.6)

Numerical Methods

Equation (6-6) (hence (6.2)) is a multirate
system of equations since some ODE components change
on vastly different time scales than others. These
systems can have accuracy and stahbilicy restrictions
that can make standard explicit integration . :thods
inefficient.

We now deucribe a new class of numerical
methods, called iterstive wultistep (IMS) methods
that overcome some of the difficulties in solving
multirete systems. These methods are A-Stable when
iterated to convergence and converge to the exact
solution for iinear automous systems of equations.

An example of a common iterative (but not IMS)
method is the forward Euler

. ) .
predictor: Yol " Yn + Atfn . (6.8)
aad the improved Euler
. (1) | (3-1) (1-1)_
corrector: Y 11 = Yoy + hAc[fn+1 fn1(6.9)
for 1 = 2,3,4... . Hare o+l refers to time tn+1 and

1 is the iteration index.
The regions of absolute stability for this
pethod are symmetric about the real axis and are shown

in Fig. 4 , below

o L

-3 -1 - ° '
A Aan

reglons for (6.8) for 1=1,2,3,4,=.

Fig. & - Stability

The methad is g:zatle if £t ie chosen smzl: enough that
72 lies within ite stability regioz. For Eq. (6.3)
this must hoid for all the eigenvalues cf C.

The stability of the improved Euler method
increases for the first fev iterations as seen in
Fig. 4 . After three iterations the stability stag-
nates to the restriction |Ag,,! &t € 2. Also, even
when the method does converge, it converges to a éolu-
tion of the difference equation nmot the differential
equation.

The IMS methods were developed or the premise
that 4f we ars willing to do extrc work by iterating
then it is not unreasonable to expect the stability
and accuracy tc¢ improve on each and every iteratiou..
These methods are based on the simple recurrence rela-

tion .

(€Y (1-1)

Yol © Y2

for 1 = 3,4,... . That is, after the corrector cycle
a different corrector is used for each additional
iteration. The constants ci depend on the iteration
count and the predictor-corrector method used to start
the process. The cj are chosen to increase the order
of accuracy of the method for linear automnus systems
and each itecation. Hence, wvhen iterated an infinice
number of times (or to convergemce) the wmethod is of
infinite order and converges to the exuct solution,
i.e. the wethod is A-Stable.

1-1)_.(i-2)
4, ﬂt(fn+1 -f°+1 ) (6.9)

The simplest IMS method, called the iterated
Runge-Kutta method, is basad on improved Euler where
€y = 1/i, 1 = 3,4... . The stability of this method
increases with each iteration, as shown in Fig. 5 .
For the first four iterations these regions are equi-
valent to the stability regions of a Rumge-Kutta
method.

° |
-3 -2 -l [-] [
1!

Fig. 5 = Stability regione for the iterated Runge-

Kutta method.

Other methods vhere the coefficients of the IMS
wethods have been derived are based on the Adams-
Bashford-Moulton predictor-corrector sequence, poly-
nomial extrapolation with a backward difference
corrector and a nev leap-frng predictor-corrector
sequence. Each mathod has a unique corrector sequence
&2d different stabllity regions. These stability re-
gions can be used as a guide to chose a good method
depending on the eigenvalues of the differential equa-
tions being solved. For axample, the second order
leap-frog predictor is given ty

() o (g2 2
Yo+l (1-r )yn +r Yo-1 + At(lﬂ')fn » (6.10a)
where
te (tgtng)/ (Epyyot)
and the third-order leap-frog corrector is
2 : 2
72 =t amly + 2y + s
+ ac )t O01/ 2430) (6.10b)



The IMS eoefficieczs for this methoc are ¢y = 3/10,
7/20, 4/21, 415'260%, 31&4/2255, 1153/9520, and 2261153
for 4 = 3,4,...% vher 1. The cy are funciions c¢f 1
and are not knowr for general r al thif tic:.

The itersnted lesp-frog methos hac stadbility
Tegions that are particulerly good aleonp the imsgin-
ary axis, as secen ir Fig. & below

» — T

b
-

)

.-I -1 -} ] 1
G’ A
= Stabiiiry regions for the icarated leap-
frog vhen 1 = 1,2,3 and 4.

The leap-frog predictor is unstable for systezs
of squations with eigervalues having a pongero real
part. Therefore, vhen artificial diszipation is added
or the boundary conditions shift the spectrum of the
discretized squation the leap-frog method cannot be
used without the corrector cycle. The fivst corrector
application extends the bound on the saximum time step
by 502, increases the method to third order and is
stable in smooth regions of the solution with or with-
out soy spatial artificial dissipation. Another dif-
ficulty with using the leap-frog predictor is a umique
type of error due to time anl] space mssh decoupling.
The odd and even points of a mesh are only weakly
coupled vhen integrating comservation lavs and errors
with frequency = 24x can degrade the accuracy of the
solution with high frequercy moise. 7The corrector
cycle couples the mesh points gmong the three time
levels and preven:s this weak instability.

A major advantage of the IMS methods is thet
they allow for local izprovesents in f.ox stability snd
accuracy of the calculation. Since rnly a single time
level is used in the iteration only the ODE components
that have failed to pass some accuracy test need be
iterated on. That is, by iterating locally in regions
of rapid changes such as in shock fromts, boundary
layers or regions with a refined mesh, the stability
and sccuracy of the calculation is improved pracisely
vhere it is needud. This approach cen be used in wmany
problems with severe local stability requirements
rather than the more complicated implicit mathods or
the method of independent timesteps (See Porter (1977))

Pig. 6

Vhan integrating ponlinear equations the IMS
methods reduce to the orde: of the predicror—corrector
or Xunge-Kutta starting methods. The stability regions
otill expand with extra iterations but the order of
accuracy remains the same. The coefficients for the

IMS methods can also bes chosen to incresse the stabi-
lity by s maximm amount on aach itaration whils re-
taining the order of accuracy of the starting method.

Stabiifey
The numerical solution of (6.8) for an
iterative M-step method can be written in the form

N Azt
y(e) =y, 111 o, 0! myu (6.11)

where A & ) is the principle eigenvalue of the dis-
cretised equation. A,numerical method is stable if
Re()) € O implies Re(Ay) € 0. Tor most numerical
suthod it is the largest sigenvalue Ag,y of the linear-
ized system that dstermines the stability conditiom.

At

We nov re.ate the statility disgrace in .
Figs. (4 ) = (¢ ) tc stability reestrictiione or £t when
sclvicg the Euler equations. Wher seconc-order zen~-
teres Cifferernzc: gre ute. ir srace 82f the les;-frc
mesino? ic uced ir time tne statility comZitier i:
ot |;‘x!< 1, or

) n(2r422),
&t max (ju; + ¢) lEi:L%;-—_“i <1
oT
2—‘ max(lu! +¢) €1 (€.12)
¥
C,u

Tris is the usual Courant- Friedrichs-Lewy stavilitv
conditior for ex;lici: thode whe:r solvice the Euler
equations. If fourth-order centerec éiflerence:s are
used in space an? the leap-frog prelictor-correz:cr

wmethod in time, the corresponcing stability comditior

is .
£ u!
[ 14 o B (‘u' 4+ ¢) €1.5
or
4t '
ez (Jv) +¢) €1.125 . (6.13)

Notice in Fig. 4 that some integration schemes such as
forvard Euler are unconditionally unstable for a.l

4t > 0 vhen the spectrur of the discretized system lies
on the ipaginary axis. It is well kmowr that forward
Euler is the heart of many standard methods to sclve
Eq. (2.6) an¢ in fact is not always unconditionally
unstable. This s because of the additior of artifi-
cial éissiptation shifts the eigenvalues of the
lineariz >d systez to the left so they have s negative
rea) part.

We caution the reader that this stability
analysis is linear and is not pecessarily valid for
highly nonlinear phenomenon such as shockwaves. In
practice to prevent nonlinear instabilities, it 1is
necessary to restrict the time step such that a shock
will not move more than one mesh point per time step.
Accuracy

The accuracy of a method depends on the phase
or dispersion error e, = Im()-2) and the damping or
dissipation error ey E Re(A=2). The graphs in Fig.
shov how these errores are reduced for hyperbolic
systems (Re()) = 0) with extra corrector iterations.

Iterated Runge-Kutta Iterated Leap-Frog

2
"
(-]
-y
MO !
(7]
° -I
-, .
5 ] -i
- ~ - d ] ‘\.
2 .51 "2 O < .51

AR
= Phase error ( — ) and damping error (-—)
for the IRK and ILF methods.

These phase and damping error diagrams present
much more relavant informstion than a Taylor series
truncation error analysis is capable of. For example,
the phase and damping error for the improved Euler
sethod with a single corrector cycle is slwost the
negative of 1 he phase and damping errors vith two
corrector cycles. Therefore, wve wuld axpect s large
incraase in accuracy by alternsting batveen one and
twvo correctors op every other time step. This has
bean found to be the case.

The time step Ai .hould be chosan to be approxi-
mately the sane wize as the time scale t for the
phenomenon being modeles. The stability restriction
for axplicit methods rec:ires the time step be propor-
tional to = max(|u|+c)Ax, the fastest signal
speed and shortest time scale Tgpin = 1/Agax of the

Fig. 7



svster. There are marYr protleme where the i=:--zz=:

time scale of t2he Troitles depends o v Tt L o -oL
The optim:z) time gie; chould be choser suzl thi: the
errors irn the time integratior are approximese.~ the
same as the errcr: ir the spatial de-iveiive ar;-oii-

mations. Therefore, if ¢ >> |u! the sratiliry res:iriz-
tion for explicit wmethods requires thet we either
take much take much szaller time steps thar are needed
to balance the space and time truncatjon error:, O wC
iterate many tipes per time atep with an itergi:ive
sultistep me '0C. -

1z the: : cases 1t is ofter best tc usé the un-
conditionelly s:atlie implicit methoi. Twr cf tre bes:
are the pecond order traizodial rule

h

-yn-fi(fn'if

Yo+l ) (€.1%)

and rhe second order backward difference forril:

- 2 - 2- Vs e
1 [ (r+1) ryy +et(rl)f o 1/ Qi

n+l

Toe
where (€.15)

re (tn+1'tn)nkn'tn-1) *

At each tipe step one must solve a monlinear systex of
equations with, say, the multigrid algorithz, see
Brandt (1977), or a noniterative direct method such as
fraction~l steps,

R’ mntly Bean and Uarming (1978) have
compared several implicit methods for the numerical
solution of the Euler equations. The methods des~
cribed in their survey can be implemented using the
sa-> techniques for spatial differencing, incorporat-

.4dng boundary conditions aud artificial dissipation

that are describ~d for explicit wmerhods in this paper.

In calculations when ¢ < |u| then the DMS
wethods are among the moat accurate methods available
requiring the least amount of work. The time step may
be varied to keep the approximation within a certain
sccuracy tolerance within the allowable stabiliry re-
striction. This is easily done with iterative methods
by comparing the difference between the predicted
value and the first corrected value.

Vil NUMERICAL METHODS

Composite Methods
The general flowv of a MOL computer code has

a well dcfined structure. The code must:

1. Define the initial conditions for the PDEs.

2. Incorporate the boundary conditions into the
discrete system.

3. Evaluate and difference the flux functions.

4. Add artificial dissipation and deii - W;.

5. Predict the solution and update the time
(t+t+At) cr correct the solution (it is um-
changed).

6. Repeat the cycle if the problem is un-

finished (go to 2).

In this algorithm four basic decisions musc be
made in steps 2-3. That determines the algorithm. In
step 2 wve recommend incorpsrating the boundary condi-
tions into the discrete system by using fictitious
points. This approach can be used with any of the pro-
ceduras described in Section IV. The extrapolation
formula for the fictitious pcints allows more freedom
to include information sbout the PDEs and the boundary
conditions into the difference scheme than does using
uncentered differences.

In Step 3 ve recommand using second-order dif-
fercnces only in the initial debugging stages of the
program and later svitching to at least fourth-order.
The higher order methods reduce the phase errors and
the smount of artificial dissipstion needed to stabi-
lize the calculation.

In Step 4 the artificisl dissipation terw added
is crucial to the success of any numerical wathod for
shock calculations. Three of the batter numerical im-

Flecenzaticns ¢f the arzificzial diss
wiil be describes leter i thic sezt

0f the OO metnois usel in Ster S the lcap-frog
prediczor-corresics met! ! has outpreformel anv other
methol we have testeé. TIf the solutioc can be stored
or. more thar twe tine levels then the higher order

ipezioz, Ec. (5.1),

Adams-Bachford-Moulton methods may be more coxpetive.

(Sec¢ Shar;ine ané Gordon (1975)).
0¢ the above decisions, the choice of a good

:artificial €issipatioz term hLas the mos: potential for

izrrovinr & wethes by tuning it te a particular problex.
lpsroves Artiificael Discipstien

The artifi-ie. cissipation tere in Eg. (5.1)
with g2=k*] car be irplexentel mumericslly ae
n

. n
(Aadn!)l L] :i*é; .1-% (7.1)
‘where
n - o -] s A . n . fg! n
‘i+ﬁ (dl+1+£i)rki+i ki)/(z.x) ‘i Li( u,+C)1 .

Trnie firs:t-order forz ir used ip all the cslcularions
in the next section.

There are three basic types of artificial dis~
sipatior evitcbes which are natural to use with pre-
dictor-corrector methods. The first, 1s to increase
the artificial dissipatlon coefficient ¢ in regimms
containing a shock and keep the dissipaticn small in
shockless regions. 1o one-dimensional calculations

‘when & shock can be detected by a discontiuuous ne’ .-

tive velocity gradient the artificial dissipation co-
efficient can be increased accordingly. For example,
a possible switch is to replace 0? in (7.1) by uc?+§
vhere a=1 if 47, > d7 + (5x/3) and, say, av1/3
otherwvise. This B éroved to be an effective switch
in many different calculations.

The second type of switch changes the artificia.
aissipation coefficient in the predictor and ecorrector
cycles. This 1s 8 particularly good switch for the it-
erated Runge-Rutta method. The forward Euler predictor
cycle ic less stable (Fig. 3) than the improved Euler
corrector method and requires more arctificial dissipa-
tion to be stable for hyperbolic equations. We, there-
fore, add a large amount of artificial dissipation in
the predictor cycle. 1In the corrector cycle the arti-
ficial diecipation coefficient .s reduced, ect to zero
or even reversed in sign to add antidifusrio: and
counteract the effects of the overly diffussJ predicted
solution. 3

Boris and Book (1976) have developed similar
diffusion/entidiffusion switche~ in their svork on flux
corrected transport methods. Their switcher are op-
timired for a particular space and time diiierencing to
maintain the monotonicity of the solution and decrease
the phase errors.

The third type ewitch is designed to prevent
contact discontinuities from smearing in long-time or
steady-gtate calculations by artificially compressing
them. Hartem (1978) has proposed modifying Eq. (2.6)
by adding the derivative of an artificial compression
function to the right hand side. This function ic
chosen such that a shock or contact discontinuity for
Eq. (2.6) is a shock for the modified equation. That
is the contact discontinuity is artificially compressed
to reduce numericsl smearing.

These improved artificial dissipation stra-
tegies all help reduce the numerical errors avay from
shocks, but no one method stands out as best for all
problems. For this reason it is one of the most an-
tive areas in developing nev methods for the Euler
efquations.

V111. NUMERICAL RESULIS

Riemann Problem

An initial value problem for the Euler squa-
tions is callad a Riemann problam if the initial data
consists of two constant states. The initisl condi-
tions chosen in this example vere also used in a wurvey



article by So2 (1976 tc allov compevisan:e wizh
difference ache=cs. Iz-iziallvy g gzs (vol.-; a:
te! in 8 shock tube by a diaphrapz &z x=(.t.
und right states ¢! the systex are:

(2]

u(x,0) = 0 u(x,0) = U
p(x,0) = ), 0€ x<k; p(x,0)=0.125, k cx<1]
p(x,0) = 1 p(x.0) = 0.1

.4t t=0 the dirphragz is burst and bv t=0,25 the gases
bave developed into a shock wave or the fsr rigr:, e
conzact discontin:itwpear x=0.7 anc a8 rarefacio: wave
t> the left of 0.5 as seen in Fig. E.
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0.0 05 1.0 0.0 0.5 1.0

¥ig. B ~ Dansaty and velocity at t = 0,25,

The problex was soived on a mesh of 100 wuints,
with fourth ordar spatial differecces and an artificial
dissipation term given by Eqna. (5.1) and (7.1) with
keia) and §=0.5. The iterated Runge—Kutta was usad in
time with one corrector cycle and [ig,.tt]| = 1.

WUhen Lhe ends of the shock tube are approximated
by a reflecting boundary condition (Eq. (4.4)) the
shock reflacts from the right boundary and passes
through the comtact discontinuity by t=0.% ip Fig. 9,
bealov.

T

v,/ )

.0 T -‘_H-.*:.’-'—'-';_lu 0.00

(X 0.5 3.0

Pig. 9 - Srlution t=0.5 with reflocting boundary
conditicns.

This problem was also molved with a nonraflect-
ing boundarv condition at x~1 using the mapping techni-
que given by Eq. (4+.17). Three fictitious points were
included betveen x=1 and x=b=1.03 in Fig. 10 balow.
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Fig. 10 - Solution at t=0.3 with an srtificial
boundary at x»..

Notice the shock has passed through the bowndary with
almost: mo reflections.

muu_hmfhm
The general one-dimensional form of the Euler

equations is / 0
(AW), + (AF(W)), = py Ax |dx»

9 \TA"

whare W and F are 40 in (2.6) ard A(x,t) is an ares
ters depdendin: on the geometry and dimensionality of
the problem. Yor ezampls, A=l fcr sla’ symsatry, A=x

(8.1)

for eviinfricel gvr try and A*r® for srheticel gvr-
meivTYy. 1o thiz yrotlez A(xn,t} 1: theé cross~sectionel
aree ol ¢ ieyiolin; cylincderical duct.,

The cylinder 4¢ 10C cz long anZ collapses gt
& coastan: veiocity of 1 oo per unit time fron a racius
of 1 er tc 0.25 cz. The collapee progresses up the
cylinder behind & hinge from x=0 at t=0 tc x=53.Pf at
t=?. A shock forms ir the gas and is maintained at the
hinge location by exponentially accelerating the
velocity of the hinpe.

This aczicrn causes the collapesing cvlinder to
ac. 86 8 veiocity sccelerater. Thet is, the iz;loding
well pushes the ges and accelerates it u> the cylinder.
The velozizy cf the gas is over 20 times the wels:cizy
cf the coliapsirg cylinder walls by the time it hac
reached the end of the cylinder. A more detzailel ¢ .5-
cription of this probler cac be founé ir Cclgete
et.8l. (1977)).

initielly the systex 15 at rest ané p=0.15,
p=1.3 and v*5’'3. The hinge is advanced according tc

h(t) = 76.93 £ (exp(Bt) - 1)

wvhere E = (y=1)/(y+l) = 1/4, A croses-section of the
cylinder, the gas velocity and maximur sound speec
(|ul+c) are shown at times t=6 and 7 in Fig. 11

Cylimisy Cresanctise

«s -
--.-'
~ Pt
; ‘
,
4 ———r
- J | - | c- ---'
2. rrrrr] T rrr| P T "
[ ] [ ] . ™ -
o -EP - L
[T} ™7 ! i
- !
. -_#]
- —".
- -
o
< T T L ' [
. - ] [ ] L]

Fig. 1L = The imploding cylinder, the gas velocity (=)
and maximm characteristic velocity u+c (---) at times
t=6 ani 7.

This solution used Eq. (5.1) with Ax=1l, 6=0,75, fourth-
order differences and the luap-frog predictor-corrector
method with |Aggx|At=l.

IX. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

In this paper we have followed a MOL approech
¢o comstructing accurate and robust numerical metl.ods
for hyperbolic PDEs derived from conservation laws. The
approach has proved to be straipht forward and has led
to some axcellent nev methods for solvirc the Euler
equations. 1t is our belief that a similar approach
may yield some equally useful methods in other "problem
areas" of pumerical analysis such as the Navier-Stokes
equations, rescting or combusting flows and nonlinear
diffusion equaticna.

A major advantage of the MOL ap, roach is the
modular atructurs of the analysis and rasulting com-
puter programs. Thase codes can evolve efficiently
since this modularity allows one to test, crmpare and
use the latest numarical mathods in the shortast
possible time.
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